5678电影网午夜理论片,翁公的大龟又长又大,欧美日逼片,很黄很刺激的18禁网站

技術指導 鐵穿線管
青島電線電纜 技術指導
當前位置:青島通達沿海電氣有限公司 >> 技術指導 >> 瀏覽文章
技術指導

光纖光纜的基本知識特別很是實用

標簽:光纖,光纜,基本,基本知識,知識,特別,很是,實用 發布時間:2024年12月29日 點擊170

  光纖光纜的基本知識有哪些?想了解光纖光纜的最新基本知識就來線纜雇用網線纜知識欄目!

  1.簡述光纖的組成。

  答:光纖由兩個基本部分組成:由透明的光學材料制成的芯和包層、涂敷層。

光纖光纜的基本知識(特別很是實用)

  2.描述光纖線路傳輸特征的基本參數有哪些?

  答:包括損耗、色散、帶寬、截止波長、模場直徑等。

  3. 產生光纖衰減的緣故原由有什么?

  答:光纖的衰減是指在一根光纖的兩個橫截面間的光功率的削減,與波長有關。造成衰減的重要緣故原由是散射、吸取以及因為連接器、接頭造成的光損耗。

  4.光纖衰減系數是如何定義的?

  答:用穩態中一根均勻光纖單位長度上的衰減(dB/km)來定義。

  5.插入損耗是什么?

  答:是指光傳輸線路中插入光學部件(如插入連接器或耦合器)所引起的衰減。

  6.光纖的帶寬與什么有關?

  答:光纖的帶寬指的是:在光纖的傳遞函數中,光功率的幅值比零頻率的幅值降低50%或3dB時的調制頻率。光纖的帶寬近似與其長度成反比,帶寬長度的乘積是一常量。

  7.光纖的色散有幾種?與什么有關?

  答:光纖的色散是指一根光纖內群時延的展寬,包括模色散、材料色散及結構色散。取決于光源、光纖兩者的特征。

  8.旌旗燈號在光纖中傳播的色散特征怎樣描述?

  答:可以用脈沖展寬、光纖的帶寬、光纖的色散系數三個物理量來描述。

  9.什么是截止波長?

  答:是指光纖中只能傳導基模的最短波長。對于單模光纖,其截止波長必須短于傳導光的波長。

  10.光纖的色散對光纖通訊體系的性能會產生什么影響?

  答:光纖的色散將使光脈沖在光纖中傳輸過程中發生展寬。影響誤碼率的大小,和傳輸距離的長短,以及體系速率的大小。

  11.什么是背向散射法?

  答:背向散射法是一種沿光纖長度上測量衰減的方法。光纖中的光功率絕大部分為前向傳播,但有很少部分朝發光器背向散射。在發光器處行使分光器觀察背向散射的時間曲線,從一端不僅能測量接入的均勻光纖的長度和衰減,而且能測出局部的不規則性、斷點及在接頭和連接器引起的光功率損耗。

  12.光時域反射計(OTDR)的測試原理是什么?有何功能?

  答:OTDR基于光的背向散射與菲涅耳反射原理制作,行使光在光纖中傳播時產生的后向散射光來獲取衰減的信息濰坊做網站,可用于測量光纖衰減、接頭損耗、光纖故障點定位以及了解光纖沿長度的損耗分布情況等,是光纜施工、維護及監測中必不可少的工具。其重要指標參數包括:動態范圍、靈敏度、分辨率、測量時間和盲區等。

  13.OTDR的盲區是指什么?對測試會有何影響?在現實測試中對盲區如何處理?

  答:通常將諸如運動連接器、機械接優等特性點產生反射引起的OTDR接收端飽和而帶來的一系列“盲點”稱為盲區。

  光纖中的盲區分為事件盲區和衰減盲區兩種:因為介入運動連接器而引起反射峰河北人事考試網,從反射峰的肇端點到接收器飽和峰值之間的長度距離,被稱為事件盲區;光纖中因為介入運動連接器引起反射峰,從反射峰的肇端點到可識別其他事件點之間的距離,被稱為衰減盲區。

  對于OTDR來說,盲區越小越好。盲區會隨著脈沖展寬的寬度的增長而增大,增長脈沖寬度雖然增長了測量長度,但也增大了測量盲區,所以,在測試光纖時,對OTDR附件的光纖和相鄰事件點的測量要使用窄脈沖高溫馬弗爐,而對光纖遠端進行測量時要使用寬脈沖。

  14.OTDR能否測量不同類型的光纖?

  答:假如使用單模OTDR模塊對多模光纖進行測量,或使用一個多模OTDR模塊對諸如芯徑為62.5mm的單模光纖進行測量,光纖長度的測量效果不會受到影響,但諸如光纖損耗、光接頭損耗、回波損耗的效果是不精確的。所以,在測量光纖時,肯定要選擇與被測光纖相匹配的OTDR進行測量,如許才能得到各項性能指標均精確的效果。

  15.常見光測試儀表中的“1310nm”或“1550nm”指的是什么?

  答:指的是光旌旗燈號的波長。光纖通訊使用的波長范圍處于近紅外區,波長在800nm~1700nm之間。常將其分為短波長波段和長波長波段,前者指850nm波長,后者指1310nm和1550nm。

  16.在目前商用光纖中,什么波長的光具有最小色散?什么波長的光具有具有最小損耗?

  答:1310nm波長的光具有最小色散,1550nm波長的光具有最小損耗。

  17.根據光纖纖芯折射率的轉變情況,光纖如何分類?

  答:可分為階躍光纖和漸變光纖。階躍光纖帶寬較窄,適用于小容量短距離通訊;漸變光纖帶寬較寬,適用于中、大容量通訊。

  18.根據光纖中傳輸光波模式的不同德龍駕駛室,光纖如何分類?

  答:可分為單模光纖和多模光纖。單模光纖芯徑約在1~10μm之間,在給定的工作波長上,只傳輸單一基模,適于大容量長距離通訊體系。多模光纖能傳輸多個模式的光波,芯徑約在50~60μm之間,傳輸性能比單模光纖差。

  在傳送復用珍愛的電流差動珍愛時,安裝在變電站通訊機房的光電轉換裝配與安裝在主控室的珍愛裝配之間多用多模光纖。

  19.階躍折射率光纖的數值孔經(NA)有何意義?

  答:數值孔經(NA)透露表現光纖的收光能力, NA越大,光纖收集光線能力越強。

  20.什么是單模光纖的雙折射?

  答:單模光纖中存在兩個正交偏振模式,當光纖不完全園柱對稱時,兩個正交偏振模式并不是簡并的,兩個正交偏振的模折射率的差的絕對值即為雙折射。

  21.最常見的光纜結構有幾種?

  答:有層絞式和骨架式兩種。

  22.光纜重要由什么組成?

  答:重要由:纖芯、光纖油膏、護套材料、PBT(聚對苯二甲酸丁二醇酯)等材料組成。

  23.光纜的鎧裝是指什么?

  答:是指在特別用途的光纜中(如海底光纜等)所使用的珍愛元件(通常為鋼絲或鋼帶)。鎧裝都附在光纜的內護套上。

  24.光纜護套用什么材料?

  答:光纜護套或護層通常由聚乙烯(PE)和聚氯乙烯(PVC)材料構成,其作用是珍愛纜芯不受外界影響。

  25.列舉在電力體系中應用的特別光纜。

  答:重要有三種特別光纜:

  地線復合光纜(OPGW),光纖置于鋼包鋁絞結構的電力線內。OPGW光纜的應用,起到了地線和通訊的雙功能,有用地進步了電力桿塔的行使率。

  纏繞式光纜(GWWOP),在已有輸青島電纜橋架路的地方,將這種光纜纏繞或懸掛在地線上。

  自承式光纜(ADSS),有很強的抗張能力,可直接掛在兩座電力桿塔之間,其最大跨距可達1000m。

  26.OPGW光纜的應用結構有幾種?

  答:重要有:1)塑管層絞+ 鋁管的結構;2) 中間塑管+ 鋁管的結構;3) 鋁骨架結構;4) 螺旋鋁管結構;5) 單層不銹鋼管結構( 中間不銹鋼管結構、不銹鋼管層絞結構);6) 復合不銹鋼管結構( 中間不銹鋼管結構、不銹鋼管層絞結構)。

  27.OPGW光纜纜芯外的絞線線材重要由什么組成?

  答:以AA線(鋁合金線) 和AS線材(鋁包鋼線)組成。

  28.要選擇OPGW光纜型號,應具備的技術條件有哪些?

  答:1) OPGW光纜的標稱抗拉強度(RTS) (kN);2) OPGW光纜的光纖芯數(SM);3) 短路電流(kA);4) 短路時間(s);5) 溫度范圍(℃)。

  29.光纜的彎曲程度是如何限定的?

  答:光纜彎曲半徑應不小于光纜外徑的20倍,施工過程中(非靜止狀況)不小于光纜外徑的30倍。

  30.在ADSS光纜工程中,需細致什么?

  答:有三個關鍵技術:光纜機械設計、懸掛點的確定和配套金具的選擇與安裝。

  31.光纜金具重要有哪些?

  答:光纜金具是指安裝光纜使用的硬件,重要有:耐張線夾,懸垂線夾、防振器等。

  32.光纖連接器有兩個最基本的性能參數,分別是什么?

  答:光纖連接器俗稱活接頭.對于單纖連接器光性能方面的要求,重點是在介入損耗和回波損耗這兩個最基本的性能參數上。

  33.常用的光纖連接器有幾類?

  答:按照不同的分類方法,光纖連接器可以分為不同的種類,按傳輸序言的不同可分為單模光纖連接器和多模光纖連接器;按結構的不同可分為FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各種型式;按連接器的插針端面可分為FC、PC(UPC)和APC。常用的光纖連接器:FC/PC型光纖連接器、SC型光纖連接器,LC型光纖連接器。

  34.在光纖通訊體系中,常見下列物品,請指出其名稱。

  AFC、FC 型適配器 ST型適配器 SC型適配器 FC/APC、FC/PC型連接器 SC型連接器 ST型連接器 LC型跳線 MU型跳線 單模或多模跳線

  35.什么是光纖連接器的介入損耗(或稱插入損耗)?

  答:是指因連接器的介入而引起傳輸線路有用功率減小的量值,對于用戶來說,該值越小越好。ITU-T規定其值應不大于0.5dB。

  36.什么是光纖連接器的回波損耗(或稱反射衰減、回損、回程損耗)? 答:是衡量從連接器反射回來并沿輸入通道返回的輸入功率分量的一個量度,其典型值應不小于25dB。

  37.發光二極管和半導體激光器發出的光最凸起的差別是什么?

  答:發光二極管產生的光是非干系光,頻譜寬;激光器產生的光是干系光,頻譜很窄。

  38.發光二極管(LED)和半導體激光器(LD)的工作特征最顯明的不同是什么? 答:LED沒有閾值,LD則存在閾值,只有注入電流超過閾值后才會產生激光。

  39.單縱模半導體激光器常用的有哪兩種?

  答:DFB激光器和DBR激光器,二者均為分布反饋激光器,其光反饋是由光腔內的分布反饋布拉格光柵提供的。

  40.光接收器件重要有哪兩種?

  答:重要有光電二極管(PIN管)和雪崩光電二極管(APD)。

  41.光纖通訊體系的噪聲產生的因素有哪些?

  答:有因為消光比不合格產生的噪聲,光強度隨機轉變的噪聲,時間抖動引起的噪聲,接收機的點噪聲和熱噪聲,光纖的模式噪聲,色散導致的脈沖展寬產生的噪聲,LD的模分配噪聲,LD的頻率啁啾產生的噪聲以及反射產生的噪聲。

  42.目前用于傳輸網建設的光纖重要有哪些?其重要特點是什么?

  答:重要有三種,即G.652常規單模光纖、G.653色散位移單模光纖和G.655非零色散位移光纖。

  G.652單模光纖在C波段1530~1565nm和L波段1565~1625nm的色散較大,一樣平常為17~22psnm?km,體系速率達到2.5Gbit/s以上時,必要進行色散補償,在10Gbit/s時體系色散補償成本較大,它是目前傳輸網中敷設最為普遍的一種光纖。

  G.653色散位移光纖在C波段和L波段的色散一樣平常為-1~3.5psnm?km,在1550nm是零色散,體系速率可達到20Gbit/s和40Gbit/s,是單波長超長距離傳輸的最佳光纖。但是,因為其零色散的特征,在采用DWDM擴容時,會出現非線性效應,導致旌旗燈號串擾,產生四波混頻FWM,因此不適合采用DWDM。

  G.655非零色散位移光纖:G.655非零色散位移光纖在C波段的色散為1~6psnm?km,在L波段的色散一樣平常為6~10psnm?km,色散較小,避開了零色散區,既克制了四波混頻FWM,可用于DWDM擴容,也可以開通高速體系。新型的G.655光纖可以使有用面積擴大到一樣平常光纖的1.5~2倍,大有用面積可以降低功率密度,削減光纖的非線性效應。

  43.什么是光纖的非線性?

  答:是指當入纖光功率超過肯定數值后,光纖的折射率將與光功率非線性相干,并產生拉曼散射和布里淵散射,使入射光的頻率發生轉變。

  44.光纖非線性對傳輸會產生什么影響?

  答:非線性效應會造成一些額外損耗和干擾,惡化體系的性能。WDM體系光功率較大并且沿光纖傳輸很長距離,因此產生非線性失真。非線性失真有受激散射和非線性折射兩種。其中受激散射有拉曼散射和布里淵散射。以上兩種散射使入射光能量降低,造成損耗。在入纖功率較小時可忽略。

  45.什么是PON(無源光網絡)?

  答:PON是本地用戶接入網中的光纖環路光網絡,基于無源光器件,如耦合器、分光器

  造成光纖衰減的多種緣故原由

  造成光纖衰減的多種緣故原由

  1、造成光纖衰減的重要因素有:本征,彎曲,擠壓,雜質,不均勻和對接等。

  本征:是光纖的固有損耗,包括:瑞利散射,固有吸取等。

  彎曲:光纖彎曲時部分光纖內的光會因散射而損失掉,造成損耗。

  擠壓:光纖受到擠壓時產生細小的彎曲而造成的損耗。

  雜質:光纖內雜質吸取和散射在光纖中傳播的光,造成的損失。

  不均勻:光纖材料的折射率不均勻造成的損耗。

  對接:光纖對接時產生的損耗,如:不同軸(單模光纖同軸度要求小于0.8μm),端面與軸心不垂直,端面不平,對接心徑不匹配和熔接質量差等。

  當光從光纖的一端射入,從另一端射出時,光的強度會削弱。這意味著光旌旗燈號通過光纖傳播后,光能量衰減了一部分。這說明光纖中有某些物質或因某種緣故原由,阻擋光旌旗燈號通過。這就是光纖的傳輸損耗。只有降低光纖損耗,才能使光旌旗燈號通順無阻。

  2、光纖損耗的分類

  光纖損耗大致可分為光纖具有的固有損耗以及光纖制成后由使用條件造成的附加損 耗。詳細細分如下:

  光纖損耗可分為固有損耗和附加損耗。

  固有損耗包括散射損耗、吸取損耗和因光纖結構不完美引起的損耗。

  附加損耗則包括微彎損耗、彎曲損耗和接續損耗。

  其中,附加損耗是在光纖的鋪設過程中人為造成的。在現實應用中,不可避免地要將光纖一根接一根地接起來,光纖連接會產生損耗。光纖細小彎曲、擠壓、拉伸受力也會引起損耗。這些都是光纖使用條件引起的損耗。究其重要緣故原由是在這些條件下,光纖纖芯中的傳輸模式發生了轉變。附加損耗是可以盡量避免的。下面,我們只討論光纖的固有損耗。

  固有損耗中,散射損耗和吸取損耗是由光纖材料自己的特征決定的,在不同的工作波長下引起的固有損耗也不同。搞清楚產生損耗的機理,定量地分析各種因素引起的損耗的大小,對于研制低損耗光纖合理使用光纖有著極其緊張的意義。

  3、材料的吸取損耗

  制造光纖的材料能夠吸取光能。光纖材料中的粒子吸取光能以后,產生振動、發熱,而將能量散失掉,如許就產生了吸取損耗。我們知道,物質是由原子、分子構成的,而原子又由原子核和核外電子組成,電子以肯定的軌道圍繞原子核旋轉。這就像我們生活的地球以及金星、火星等行星都圍繞太陽旋轉一樣,每一個電子都具有肯定的能量,處在某一軌道上,或者說每一軌道都有一個確定的能級。

  距原子核近的軌道能級較低,距原子核越遠的軌道能級越高。軌道之間的這種能級差別的大小就叫能級差。當電子從低能級向高能級躍遷時,就要吸取響應級別的能級差的能量。

  在光纖中,當某一能級的電子受到與該能級差相對應的波長的光照射時,則位于低能級軌道上的電子將躍遷到能級高的軌道上。這一電子吸取了光能,就產生了光的吸取損耗。

  制造光纖的基本材料二氧化硅(SiO2)自己就吸取光,一個叫紫外吸取,另外一個叫紅外吸取。目前光纖通訊一樣平常僅工作在0.8~1.6μm波長區,因此我們只討論這一工作區的損耗。

  石英玻璃中電子躍遷產生的吸取峰在紫外區的0.1~0.2μm波長左右。隨著波長增大,其吸取作用漸漸減小,但影響區域很寬,直到1μm以上的波長。不過,紫外吸取對在紅外區工作的石英光纖的影響不大。例如,在0.6μm波長的可見光區,紫外吸取可達1dB/km,在0.8μm波長時降到0.2~0.3dB/km,而在1.2μm波長時,大約只有0.ldB/km。

  石英光纖的紅外吸取損耗是由紅外區材料的分子振動產生的。在2μm以上波段有幾個振動吸取峰。

  因為受光纖中各種摻雜元素的影響,石英光纖在2μm以上的波段不可能出現低損耗窗口,在1.85μm波長的理論極限損耗為ldB/km。

  通過研究,還發現石英玻璃中有一些"破壞分子"在搗亂,重要是一些有害過渡金屬雜質,如銅、鐵、鉻、錳等。這些"壞蛋"在光照射下,貪婪地吸取光能,亂蹦亂跳,造成了光能的損失。消滅"搗亂分子",對制造光纖的材料進行格的化學提純,就可以大大降低損耗。

  石英光纖中的另一個吸取源是氫氧根(OHˉ) 期的研究,人們發現氫氧根在光纖工作波段上有三個吸取峰,它們分別是0.95μm、1.24μm和1.38μm,其中1.38μm波長的吸取損耗最為緊張,對光纖的影響也最大。在1.38μm波長,含量僅占0.0001的氫氧根產生的吸取峰損耗就高達33dB/km。

  這些氫氧根是從哪里來的呢?氫氧根的來源許多,一是制造光纖的材料中有水分和氫氧化合物,這些氫氧化合物在質料提純過程中不易被消滅掉,最后仍以氫氧根的情勢殘留在光纖中;二是制造光纖的氫氧物中含有少量的水分;三是光纖的制造過程中因化學反應而生成了水;四是外界空氣的進入帶來了水蒸氣。然而,如今的制造工藝已經發展到了相稱高的水平,氫氧根的含量已經降到了充足低的程度,它對光纖的影響可以忽略不計了。

  4、散射損耗

  在黑夜里,用手電筒向空中照射,可以看到一束光柱。人們也曾看到過夜空中探照燈發出粗大光柱。

  那么,為什么我們會看見這些光柱呢?這是由于有很多煙霧、灰塵等細小顆粒浮游于大氣之中,光照射在這些顆粒上,產生了散射,就射向了四面八方。這個征象是由瑞利最先發現的,所以人們把這種散射命名為"瑞利散射"。

  散射是怎樣產生的呢?原來組成物質的分子、原子、電子等細小粒子是以某些固有頻率進行振動的,并能釋放出波長與該振動頻率響應的光。粒子的振動頻率由粒子的大小來決定。粒子越大,振動頻率越低,釋放出的光的波長越長;粒子越小,振動頻率越高,釋放出的光的波長越短。這種振動頻率稱做粒子的固有振動頻率。但是這種振動并不是自行產生,它必要肯定的能量。一旦粒子受到具有肯定波長的光照射,而照射光的頻率與該粒子固有振動頻率雷同,就會引起共振。粒子內的電子便以該振動頻率開始振動,效果是該粒子向四面八方散射出光,入射光的能量被吸取而轉化為粒子的能量,粒子又將能量重新以光能的情勢射出去。因此,對于在外部觀察的人來說,看到的彷佛是光撞到粒子以后,向四面八方飛散出去了。

  光纖內也有瑞利散射,由此而產生的光損耗就稱為瑞利散射損耗。鑒于目前的光纖制造工藝水平,可以說瑞利散射損耗是無法避免的。但是,因為瑞利散射損耗的大小與光波長的4次方成反比,所以光纖工作在長波長區時,瑞利散射損耗的影響可以大大減小。

  5、天賦不足,愛莫能助

  光纖結構不完美,如由光纖中有氣泡、雜質,或者粗細不均勻,分外是芯-包層交界面不平滑等,光線傳到這些地方時,就會有一部分光散射到各個方向,造成損耗。這種損耗是可以想辦法戰勝的,那就是要改善光纖制造的工藝。 散射使光射向四面八方,其中有一部分散射光沿著與光纖傳播相反的方向反射回來,在光纖的入射端可接收到這部分散射光。光的散射使得一部分光能受到損失,這是人們所不盼望的。但是,這種征象也可以為我們所行使,由于假如我們在發送端對接收到的這部分光的強弱進行分析,可以檢查出這根光纖的斷點、缺陷和損耗大小。如許,通過人的聰明才智,就把壞事變成了好事.

  光纖的損耗近年來,光纖通訊在很多領域得到了廣泛的應用。實現光纖通訊,一個緊張的題目是盡可能地降低光纖的損耗。所謂損耗是指光纖每單位長度上的衰減,單位為dB/km。光纖損耗的高低直接影響傳輸距離或中繼站間隔距離的遠近,因此,了解并降低光纖的損耗對光纖通訊有偏重大的實際意義。

  一、 光纖的吸取損耗

  這是因為光纖材料和雜質對光能的吸取而引起的,它們把光能以熱能的情勢消費于光纖中,是光纖損耗中緊張的損耗,吸取損耗包括以下幾種:

  1.物質本征吸取損耗 這是因為物質固有的吸取引起的損耗。它有兩個頻帶,一個在近紅外的8~12μm區域里,這個波段的本征吸取是因為振動。另一個物質固有吸取帶在紫外波段,吸取很強時,它的尾巴會拖到0.7~1.1μm波段里去。

  2.摻雜劑和雜質離子引起的吸取損耗 光纖材料中含有躍遷金屬如鐵、銅、鉻等,它們有各自的吸取峰和吸取帶并隨它們價態不同而不同。由躍遷金屬離子吸取引起的光纖損耗取決于它們的濃度。另外,OH-存在也產生吸取損耗,OH-的基本吸取極峰在2.7μm附近,吸取帶在0.5~1.0μm范圍。對于純石英光纖,雜質引起的損耗影響可以不考慮。

  3.原子缺陷吸取損耗 光纖材料因為受熱或強烈的輻射,它會受激而產生原子的缺陷,造成對光的吸取,產生損耗,但一樣平常情況下這種影響很小。

  二、光纖的散射損耗

  光纖內部的散射,會減小傳輸的功率,產生損耗。散射中最緊張的是瑞利散射,它是由光纖材料內部的密度和成份轉變而引起的。

  光纖材料在加熱過程中,因為熱騷動,使原子得到的壓縮性不均勻,使物質的密度不均勻,進而使折射率不均勻。這種不均勻在冷卻過程中被固定下來,它的尺寸比光波波長要小。光在傳輸時碰到這些比光波波長小,帶有隨機起伏的不均勻物質時,改變了傳輸方向,產生散射,引起損耗。另外,光纖中含有的氧化物濃度不均勻以及摻雜不均勻也會引起散射,產生損耗。

  三、波導散射損耗

  這是因為交界面隨機的畸變或粗糙所產生的散射,現實上它是由外觀畸變或粗糙所引起的模式轉換或模式耦合。一種模式因為交界面的起伏,會產生其他傳輸模式和輻射模式。因為在光纖中傳輸的各種模式衰減不同,在長距離的模式變換過程中,衰減小的模式變成衰減大的模式,延續的變換和反變換后,雖然各模式的損失會平衡起來,但模式總體產生額外的損耗,即因為模式的轉換產生了附加損耗,這種附加的損耗就是波導散射損耗。要降低這種損耗,就要進步光纖制造工藝。對于拉得好或質量高的光纖,基本上可以忽略這種損耗。

  四、光纖彎曲產生的輻射損耗

  光纖是柔軟的,可以彎曲,可是彎曲到肯定程度后,光纖雖然可以導光,但會使光的傳輸途徑改變。由傳輸模轉換為輻射模,使一部分光能滲透到包層中或穿過包層成為輻射模向外走漏損失掉,從而產生損耗。當彎曲半徑大于5~10cm時,由彎曲造成的損耗可以忽略。

  在光纖溶接中色譜排列順須廣電體系順序如下:

  藍;橘;綠;棕; 灰;白;紅;黑; 黃;紫;粉;青;

  在光纜中束管排列順序如下:

  一: 在光纜中多芯光纖時會分多束管珍愛,他的排列順序一樣平常有綠色,紅色和白色束管順序為:

  綠色束管為第一管;

  緊挨綠色束管的白色束管委第二管:

  挨白色束管(第二管)的束管為第三管;

  依序率推......

  紅色束管為最后一管。

  二: 在光纜中多芯光纖時也會有獨束管然后用不同顏色絲繩加以捆綁來區分各束順序,色譜如下:

  藍;橘;綠;棕;

  灰;白;紅;黑;

  黃;紫;粉;本;

  用藍絲繩捆綁地為第一束;

  橘色絲繩捆綁的為第二束;

  綠......

  三: 光纖不管在束管中,照舊絲繩中他們的色譜排列都是按:藍;橘;綠;棕;灰;白;紅;黑;黃;紫;粉;本;一管和一束都是最多12根。

  還有的廠家是兩個色譜以后按順時針的方向白1,白2,白3等.